Fractionalisation in spin-1 triangulene chains

Green Technology Materials & Supply Chains

1st European School on Advanced Materials

World map of Critical Raw Materials imports to the EU

Source: European Commission, 2023.

1st European School on Advanced Materials

Fractionalisation in spin-1 triangulene chains

Universidad de Oviedo

Jaime Ferrer Department of Physics

Outline

- **1. Spin-1 Haldane chains**
- 2. Graphene triangulenes
- 3. Grogu
- 4. Triggering a singlet-triplet transition
- **5. Fractionalisation in Physics**

Collaborators & funding

Gabriel Martínez-Carracedo

Laszló Oroszlany

Amador García-Fuente

Laszlo Szunghyo

Grant # PI	Grant # PID2022-137078NB-100		AYUD/2021/51185	
MINISTERIO DE CIENCIA E INNOVACIÓN	AGENCIA ESTITAL DE INVESTIGACIÓN	UNIÓN EUROPEA	GOBIERNO DEL PRINCIPADO DE ASTURIAS CONSEJERÍA DE CIENCIA. INNOVACIÓN Y UNIVERSIDAD	FICYT

1st European School on Advanced Materials

3 of 30

What is the angular momentum of a particle?

The angular momentum L measures how much angular motion an orbiting particle P has about an origin O

What are atomic spins S_A?

What is a quantum spin 1/2?

$$\bullet = |\uparrow \rangle = |S = 1/2, S_z = +1/2 \rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \qquad \bullet = |\downarrow \rangle = |S = 1/2, S_z = -1/2 \rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

The spin angular momentum of an electron is $\hat{\mathbf{S}} = \left(\hat{S}_x, \hat{S}_y, \hat{S}_z\right) = \frac{\hbar}{2} \left(\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \right)$ Pauli matrices $\sigma_x \ \sigma_y \ \sigma_z$ $\hat{\mathbf{S}}^2 = \frac{3}{4} \hbar^2 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ The two eigen-vectors of \mathbf{S}_z are precisely $|\uparrow\rangle \& |\downarrow\rangle$

Werner Heisenbera

Wolgang Pauli

How do you add two electrons' spins?

8 of 30

What are interacting atomic spins?

1st European School on Advanced Materials

The Heisenberg Hamiltonian

The two-site spin-1/2 Heisenberg Hamiltonian

$$\hat{H} = J\,\hat{\mathbf{S}}_1 \cdot \hat{\mathbf{S}}_2 = \frac{J}{2}\,\left((\hat{\mathbf{S}}_1 + \hat{\mathbf{S}}_2)^2 - \hat{\mathbf{S}}_1^2 - \hat{\mathbf{S}}_2^2\right) = \frac{J}{2}\,\left((\hat{\mathbf{S}}_1 + \hat{\mathbf{S}}_2)^2 - \frac{3}{2}\right)$$

Two spins 1/2 add up as
$$\left(S = \frac{1}{2}\right) \otimes \left(S = \frac{1}{2}\right) = (S = 0) \oplus (S = 1) = \text{Singlet} \oplus \text{Triplet}$$

Eigen-energies:
$$E(S=0) = -\frac{3}{4}J$$

 $E(S=1) = +\frac{1}{4}J$
 $E(S=1) = +\frac{1}{4}J$

11 of 30

Ordered & disordered spin systems

What is a (singlet-triplet) spin qbit ?

$$\begin{array}{ll} \textbf{Get output qbit} & |\psi_{\text{out}} \rangle = \hat{H} \, |\psi_{\text{in}} \rangle = \begin{pmatrix} \cos \frac{\theta}{2} & \sin \frac{\theta}{2} \\ \sin \frac{\theta}{2} & -\cos \frac{\theta}{2} \end{pmatrix} \, \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} \cos \frac{\theta}{2} \\ \sin \frac{\theta}{2} \end{pmatrix} = \cos \frac{\theta}{2} \, |S| \rangle + \sin \frac{\theta}{2} \, |T_0| \rangle \\ \end{array}$$

1st European School on Advanced Materials

13 of 30

What is a quantum spin chain ?

A quantum spin chain has N atoms lined up in a row

Each atom has a spin $\hat{\mathbf{S}}$

Atoms interact via the exchange constant J


```
Duncan Haldane
```


Quantum chains have always a disordered ground state. Their energy spectrum should have a gap

Spin fractionalisation in the Haldane spin-1 chain

Haldane's conjecture on infinite AFM spin chains

$$\hat{H} = \frac{J}{2} \sum_{ij} \hat{\mathbf{S}}_i \cdot \hat{\mathbf{S}}_j \quad (J > 0)$$

S = integer, then energy spectrum has a gap S = half-integer, then energy spectrum is gapless

AKLT exactly solvable model on spin-1 infinite AFM chains
$$\hat{H} = \frac{J}{2} \sum_{ij} \left(\hat{S}_i \cdot \hat{S}_j + \beta \left(\hat{S}_i \cdot \hat{S}_j \right)^2 \right) \beta = 1/3$$

Each atomic S=1 spin is fractionalized into two spin-1/2 bits

The chain makes an infinite bond solid

Image: the chain makes an infinite bond solid

Haldane, Physics Letters 93A, 464 (1983)

Affleck, Kennedy, Lieb & Tasaki, Phys. Rev. Lett. 59, 799 (1987)

1st European School on Advanced Materials

15 of 30

Spin excitations in the Haldane chain

White & Huse, Phys. Rev. B 48, 3844 (1993)

1st European School on Advanced Materials

Synthesis of spin-1 graphene triangulene chains

S. Mishra et al, Nature 598, 287 (2021)

1st European School on Advanced Materials

Graphene triangulenes (GT) are artificial spins

17 of 30

Theory confirms that GT are spin-1 objects

Spin-1 triangulene chains are Haldane spin -1 chains

1st European School on Advanced Materials

19 of 30

20 of 30

Grogu: mastering... the spins !

$$\mathcal{H} = \frac{1}{2} \sum_{i,j} \hat{\mathbf{S}}_i J_{ij}^1 \hat{\mathbf{S}}_j + \sum_i \hat{\mathbf{S}}_i K_i \hat{\mathbf{S}}_i + \sum_{i,j} \hat{\mathbf{S}}_i J_{ij}^2 \hat{\mathbf{S}}_j \left(\hat{\mathbf{S}}_i \cdot \hat{\mathbf{S}}_J \right) + \sum_{i,j} \hat{\mathbf{S}}_i J_{ij}^2 \hat{\mathbf{S}}_j \left(\hat{\mathbf{S}}_i \times \hat{\mathbf{S}}_J \right) + \dots$$

Compute any bilinear or biquadratic exchange constant up to any desired neighbour

Oroszlany et al., Phys. Rev. B 99, 224412 (2019)

G. Martínez-Carracedo et al., arXiv:2309.02558

1st European School on Advanced Materials

Our method to extract J and β

Oroszlany et al., Phys. Rev. B 99, 224412 (2019)

1st European School on Advanced Materials

G. Martínez-Carracedo et al., arXiv:2309.02558

Our results for J and β

$$\hat{H} = J \sum_{i} \left(\hat{\mathbf{S}}_{i} \cdot \hat{\mathbf{S}}_{i+1} + \beta \left(\hat{\mathbf{S}}_{i} \cdot \hat{\mathbf{S}}_{i+1} \right)^{2} \right)$$

	dimer	infinite chain	Mishra et al.
J	17.7 meV	19.8 meV	18 meV
b	0.03	0.05	0.09

G. Martínez-Carracedo et al., Phys. Rev. B 107, 035432 (2023)

G. Martínez-Carracedo et al., arXiv:2309.02558

1st European School on Advanced Materials

What we want to do: control the singlet & triplet states

1st European School on Advanced Materials

Profiling the idea

G. Martínez-Carracedo et al., arXiv:2309.02558

1st European School on Advanced Materials

Strategies to modify J_{1N}

Electrically-driven singlet-triplet transition

 J_{1N} can be modified by an external in-plane in-axis electric field ${m {\cal E}}$

N = 9 GT chain

Singlet-triplet crossing at $\mathcal{E} \sim 0.2 \text{ V/Å}$

Computed $J_{1N,c} \sim 0.03 J$ agrees with exact diagonalization

S-atom + \mathcal{E} induce a dipole in adjacent triangulenes

G. Martínez-Carracedo et al., Phys. Rev. B 107, 035432 (2023) 1st European School on Advanced Materials 26 of 30

Fractionalisation in Physics: what is it ?

Elementary particles cannot be teared apart ... or maybe they can ?

Elementary excitations in the Quantum Hall Effect carry fractional charge

Magnetic monopoles do not exist ... but maybe they can be table-top fabricated ?

The Schrieffer - Heeger - Su chain

The SSH chain was introduced to model dimerization in polyacetylene chains

The chain makes intra- or inter-cell bonds depending on the bonding strength ratio *v* - *w*

The chain hosts topologically-protected edge states if v > w

70)

Alan Heeger

Robert Schrieffer

Su, Schrieffer & Heeger, Phys. Rev. Lett. 42, 1698 (1979)

1st European School on Advanced Materials

Jackiw & Schrieffer, Nucl. Phys. B 190, 253 (1981)

Gandia 2023

28 of 30

The Kitaev chain

Majorana proposed in 1937 that spin-1/2 particles could exist that would be their own antiparticle These hypothetical Majorana fermions have no charge, therefore hardly interact: they are *hermits*

Majorana fermions do not possibly exist on their own

Kitaev proposed in 2000 an atomic chain model where electrons fractionalize into Majorana fermions

Depending on whether they re-bind intra- or inter-atom, unpaired Majorana fermions appear at the chain edges These edge Majorana fermions are topologically protected & building blocks of *Topological Quantum Computation*

 $\begin{array}{c} \begin{array}{c} \gamma_{1,1} & \gamma_{1,2} \\ \hline & & & & \\ \hline \end{array} \end{array} \xrightarrow{} \begin{array}{c} \gamma_{N,1} & \gamma_{N,2} \\ \hline & & \\ \hline \end{array} \end{array}$

Ettore Majorana

Ad - Ad - Ad FPI PhD grant Ad

Ad - Ad - Ad

• Topic:

• Activities:

modelling, programming & simulation

theory of 2-dimensional magnets

- Duration: 4 years
- Advisors: Jaime Ferrer & Amador García-Fuente
- Place: Department of Physics, Universidad de Oviedo
- Gross/net salary: 1.400 / 1.200 euro-month
- Other benefits: social security, exchange visits, etc.
- Starting date: december 2023 february 2024
- Required education: physics / quantum chemistry BSc & MSc
- Contact:

ferrer@uniovi.es

Conclusions

Basic science has endeavored to understand nature in the past

Technology is enabling us to *fabricate* table-top nature

Spin fractionalization occurs in spin-1 chains

We propose strategies to manipulate spin-qbits in spin-1 chains

We have developed *Grogu*, a tool to master spins

30 of 30

Fractionalisation in spin-1 triangulene chains

Green Technology Materials & Supply Chains

1st European School on Advanced Materials

World map of Critical Raw Materials imports to the EU

Source: European Commission, 2023.

1st European School on Advanced Materials